
IEEE Transactions on Robotics and Automation, vol. 11, pp. 571-584, Aug. 1995

Diagonalized Lagrangian Robot Dynamics

Abhinandan Jain and Guillermo Rodriguez

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Abstract

A diagonal equation _� + C(�;�)= � for robot dynamics is developed by combining recent

mass matrix factorization results [1{7] with classical Lagrangian mechanics. Diagonalization im-

plies that at each �xed time instant the equation at each joint is decoupled from all of the other

joint equations. The equation involves two important variables: a vector � of total joint rotational

rates and a corresponding vector � of working joint moments. The nonlinear Coriolis term C(�;�)

depends on the joint angles � and the rates �. The total joint rates � are related to the relative

joint-angle rates _� by a linear spatial operator m�(�) mechanized by a base-to-tip spatially recursive

algorithm. The total rate �(k) at a given joint k re
ects, in a very unique sense the total rotational

velocity about the joint, and includes the combined e�ects from all the links between joint k and

the manipulator base. This di�ers from the more traditional joint-angle rates _� which only re
ect

the relative, as opposed to total, rotation about the joints. Similarly, the working moments � = `T

are related to the applied moments T by the spatial operator `(�)=m�1(�) mechanized by a tip-

to-base spatially recursive algorithm. The working moment �(k) at a given joint k is that part of

the applied moment T (k) which does actual mechanical work, while its other part a�ects only the

non-working internal constraint forces. The diagonal equations are obtained by using the recently

developed [1] mass matrix factorization M(�)=m(�)m�(�) of the system Lagrangian. The diago-

nalization is achieved in velocity space. This means that only the velocity variables _� are replaced

with the new variables �, while the original con�guration variables � are retained. The new joint

velocity variables � can be viewed as time-derivatives of Lagrangian quasi-coordinates, similar to

those of classical mechanics. The velocity transformations are shown to always exist for tree-like,

articulated multibody systems, and they can be readily implemented using the spatially recursive

�ltering and smoothing methods [1,4,7] advanced by the authors in recent years.

1 Mass Matrix Factors Diagonalize Lagrange's Equations

The main new result in this paper is a diagonalized equations of motion _� + C(�;�)= �, which

embodies in a simple, elegant, diagonal equation the complete dynamical behavior of robotic ma-

nipulators, while simultaneously exploiting the computational e�ciency of the spatially recursive

�ltering and smoothing algorithms of [4, 7] to conduct necessary velocity coordinate transforma-

tions. The diagonal equations of motion result by combining Lagrangian mechanics with the mass

matrix factorization

M = [I +H�K]D[I +H�K]� (1.1)

1

in which H, �, D and K are spatial operators mechanized recursively by suitably de�ned [4, 7]

spatial �ltering and smoothing algorithms. Use of this in the system kinetic energy K(�; _�) =
1
2
_�
�
M(�) _� results in

K(�; _�) =
1

2
��� (1.2)

where � = [�(1); � � � ;�(N)] are a new set of variables related to the joint-angle rates _� by

� =D
1

2 [I +H�K]� _� (1.3)

In these new variables, the kinetic energy is diagonalized in the sense that it is a simple

sum of the squares of the total joint rates �(k) over all of the N joints. This is in contrast to the

original expression K(�; _�) = 1
2
_�
�
M(�) _� which involves the mass matrix M(�) as a weighting

matrix.

The diagonal equations of motion _�+C(�;�)= � are obtained by applying classical La-

grangian mechanics methods to the above diagonalized kinetic energy. In addition to being di-

agonalized, the kinetic energy can also be thought of as being normalized. This means that the

coe�cient multiplying each of the terms in the kinetic energy expression (1.2) is identically equal

to 1
2
. An alternative set of diagonal equations of motion with un-normalized coe�cients are also

derived.

The Total Joint Rates Are Time Derivatives of Lagrangian Quasi-Coordinates

The new variables � have a physical interpretation as time-derivatives of Lagrangian quasi-coordinates,

similar to those typically encountered [8,9] in analytical dynamics. These new variables are related

to the original joint-angle velocities _� by means of the con�guration-dependent linear transforma-

tion m�=D
1

2 [I +H�K]� in � =m� _�. This means that when the new joint velocity variables

� are integrated with respect to time, they do not directly result in the joint-angle con�guration

variables �. In order to determine the joint angles, it is �rst necessary to compute the joint-angle

velocities _�. This requires that the linear transformation m� above be inverted in order to ob-

tain _� = (m�)�1�. At �rst, inversion of the transformation m� looks di�cult. However, recent

factorization results [1, 6] make it trivial to perform this inversion. The inverse transformation is

given explicitly by (m�)�1 = [I �H K]�D
�

1

2 where H, , K, and D are spatial operators also

mechanized by e�cient spatially recursive algorithms [4, 7].

There is a similarity between the variables � and the angular velocity vector ! typically

used to describe the rotational velocity of a single rigid body with respect to an inertial coordinate

frame. This similarity can be used to gain insight about the physical meaning of the total joint-rate

variables �. The dynamics of a single rigid body are governed by the equation J _! + ! �J! = T ,

in which J is the rotational inertia tensor, and T is the vector of applied moments. This equation

of motion is considerably simpler and elegant than that which would be obtained by using the

system con�guration variables, which for a rigid body would be typically the three Euler angles

� = [�1;�2;�3] describing the orientation of the body. Although the dynamics equations are sim-

pler, there is a drawback: direct integration of the angular velocity ! does not produce the body

orientation. The angular velocity variables are therefore time-derivatives of quasi-coordinates. They

are related to the time derivatives _� of the con�guration variables � by means of a linear, con�gu-

ration dependent transformation m�(�), which for a rigid body is a trigonometric function of the

2

con�guration variables. This means that ! =m�(�) _� and _� = [m�(�)]�1!. Thus, use of the an-

gular velocity ! leads to very simple equations of motion but with the price that the corresponding

kinematic equation _� = [m�(�)]�1! requires inversion of the transformationm�(�). In the case of

a single rigid body, it is possible to do this analytically and with manageable penalty.

In the case of multiple, linked rigid bodies considered in this paper, the factorization results

of [4, 7] enable a similar analytical conversion from the time-derivatives of quasi-coordinates � to

the joint-angle velocities _�. Integrating the joint-angle rates _� with respect to time results in the

system con�guration. One important di�erence is that, the transformation m� relating the new

rate coordinates � to the joint-angle rates _� depends on dynamics quantities such as link masses

and inertias, while for a single rigid-body, it involves only kinematical quantities.

The New Forcing Term Re
ects the Working Moments

Another key term in the new equations of motion is the forcing \input" � = col[�(k)] appearing

on the right side of the equation. This term is related to the applied moments T by means of the

con�guration dependent relationship

� =m�1(�)T =D�
1

2 [I �H K)T] (1.4)

The operators H, , K and D are mechanized by an inward �ltering operation [4]. The

inputs � also have a physical interpretation. The input �(k) at the kth joint can be thought of

as being that part of the applied moment T (k) that does mechanical work at this joint. This is

discussed in more detail later in the paper.

The New Coriolis Term is Computed Both in Closed-Form and Recursively

The Coriolis term C(�;�) in the diagonalized equations of motion depends quadratically on the

new velocity variables �. A closed-form expression for this term is derived that explicitly shows

this quadratic dependence. This leads to a relatively simple physical interpretation of the Coriolis

forces in the diagonalized equations. The Coriolis term can be computed by means of an inward

spatial recursion from the tip of the manipulator to its base. This inward recursion is O(N) in

that the number of arithmetical operations increases only linearly with the number of degrees of

freedom. Furthermore, the detailed steps in the inward recursion are similar to those required to

factor and diagonalize the manipulator mass matrix. Consequently, the e�ects of the Coriolis term

can be easily accounted in the recursions that diagonalize the equations of motion, with very little

extra computational cost.

Relationship to Globally Diagonalized Equations

There has been recent interest in �nding global coordinate transformations that diagonalize the

equations of motion [10{12]. The goal has been to �nd global coordinate transformations in which

both the con�guration variables � and the corresponding velocity variables _� are replaced by a

new set of transformed coordinates. When written in the transformed coordinates, the equations

of motion are completely decoupled from each other. Conditions for the existence of such a global

transformation are well-established in the theory of non{Euclidean geometry. The globally diago-

nalizing transformation exists when the metric de�ned by the mass matrix is free of curvature [13]

and in which case the mass matrix is equivalent to one with constant coe�cients in the new coor-

dinate system. Unfortunately, as pointed out in [10{12], this is rarely the case for most practical

multibody systems.

3

In contrast, the present paper shows that the goal of diagonalizing in velocity space is

always achievable for tree{topology systems. The diagonalizing transformations described here

are applied on the tangent space [13] of the con�guration manifold instead of the con�guration

coordinates, i.e., the transformations operate on velocities and time derivatives of con�guration

variables. While the goals are more modest than in the search for global transformations, on the

other hand, diagonalization in velocity space is shown to exist for very general classes of joint-

connected multibody systems. Furthermore, explicit spatially recursive �ltering and smoothing

algorithms are derived to compute e�ciently the required velocity-space transformations.

Relationship to The Innovations Approach of Linear Filtering Theory

The quasi-coordinates � appearing in the diagonalized equations of motion are closely analogous to

the innovations process investigated extensively [14{16] in the area of linear �ltering and estimation

for state space systems. The innovations process [14] is a central ingredient in factoring, diago-

nalizing, and inverting state-space system covariance matrices by means of Kalman �ltering and

smoothing algorithms. The innovations process plays a similar role in the dynamics of mechanical

systems [1, 4, 6]. The analogy between estimation theory and robot dynamics has been one of the

central themes investigated by the authors [4,7]. This paper provides an additional chapter in this

still unfolding story.

2 Globally Diagonalized Dynamics Are Elegant But Rarely Exist

For a manipulator with N degrees of freedom, the traditional Lagrangian equations of motion are

M(�)�� + C(�; _�)=T ; C(�; _�) = _M _��
1

2
_�
�
M�

_� (2.1)

where by de�nition _�
�
M�

_�=col[_�
�
M�i

_�], andM�i
is the derivative of the mass matrixM with

respect to the joint coordinate �(i). The global diagonalization approach seeks to replace the

con�guration coordinates � and their time-derivatives _� with a new set of variables (#; _#) in which

the equations of motion are decoupled. This approach is based on the following assumption, which

imposes the very stringent condition that the \square-root" factor of the mass matrix,m(�), must

be the gradient of a global coordinate transformation. This assumption is very rarely satis�ed in

practice [10{12]. Nonetheless, it is of interest to examine the globally diagonalized equations as an

introduction to the locally diagonalized equations discussed in the present paper.

Assumption 1 There exists a global coordinate transformation # = f(�) 2 RN such that

r�# = r�f =m�(�) 2 RN�N (2.2)

and the matrix function m(�) is the \square root" of the mass matrix

m(�)m�(�) =M(�) (2.3)

for all �.

The above assumption requires that the mass matrix factor m(�) be the gradient of some

function f(�). The requirement that f be a global coordinate transformation implies by de�nition

4

that f and m must be both di�erentiable and invertible. It follows from (2.2) that the new

generalized velocity vector is _# =m�(�) _�. In terms of this velocity vector _#, the kinetic energy is

K(#; _#) = 1
2
_#
� _#.

Lemma 2.1 When Assumption 1 holds, the equations of motion in the new coordinates (#; _#) are

�# = � where � = `(�)T 2 RN (2.4)

with `(�)
4
= m�1(�).

Proof: Since �# =m��� + _m� _�, then �� = `�[�#� _m� _�]. Use of this in (2.1) and pre-multiplication

by ` leads to �#+ C(#; _#)= �, where C(#; _#)= `C(�; _�)� _m� _�. However, C(#; _#) = 0, since _�
�
M�

_�

= r� [_#
� _#] = 2[r� _#

�
] _#= 2[d(r�#

�)=dt] _# = 2 _m _# and ` _M _� = ` _m _#+ _m� _�.

The new equations of motion in (2.4) are very simple. The mass matrix is the identity

matrix, and there are no Coriolis forces. The component degrees of freedom are completely decou-

pled and governed by independent second-order linear di�erential equations. Thus, the coordinate

transformation f(�) provides globally diagonalizing coordinates (#; _#) which replace the earlier

(�; _�) coordinates. Since T is the vector of generalized forces corresponding to the generalized

velocities vector _�, the principle of virtual work implies that � is the vector of generalized forces

corresponding to the generalized velocities _#. Note that (2.4) can be obtained alternatively by

deriving the Lagrangian equations of motion in the # coordinate system using the diagonalized

expression (1.2) for the kinetic energy.

Now that the simplicity resulting from the global coordinate transformation f(�) is ap-

parent, we examine conditions under which Assumption 1 is satis�ed by multibody systems. The

answer is based on a well{established result from non{Euclidean geometry. It is known [13] that

the mass matrixM de�nes a metric tensor on the con�guration manifold. Since tensor quantities

are invariant under coordinate transformations, a globally diagonalizing transformation exists if

and only if the metric tensor is a Euclidean metric tensor, i.e. one with constant coe�cients. A

manifold with a Euclidean metric is said to be \
at" and the curvature tensor associated with it is

identically zero. The precise necessary conditions for the metric tensor associated withM to be a

Euclidean metric are summarized in the following lemma [11{13].

Lemma 2.2 For Assumption 1 to hold, it is necessary that the curvature tensor R of M vanish,

that is, each of the N (N + 1)=2 Riemannian symbols of the �rst kind Rhijk de�ned below must

vanish.

Rhijk=
1

2

"
@2Mhk

@�i@�j

+
@2Mij

@�h@�k

�
@2Mhj

@�i@�k

�
@2Mik

@�h@�j

#
+
X
l

hn
l
ij

o
[hk; l] �

n
l
ik

o
[hj; l]

i
(2.5)

The quantities [ij; k] and
n
k
ij

o
are the Christo�el symbols of the �rst and second kind respectively [9]

and are computed from appropriate combinations of �rst derivatives of the mass matrix with respect

to the joint angles.

5

In practice, the conditions in this lemma are very restrictive, and are rarely satis�ed by practical

multibody systems [11, 12]. Even when they are satis�ed, the conditions are extremely di�cult to

verify, as �rst and second derivatives of the mass matrix must be computed with respect to the

con�guration variables �. The next section describes an alternative approach to diagonalizing the

equations of motion that is broadly applicable to complex multibody systems.

3 Diagonalization in Velocity Space is Easier

Instead of diagonalizing globally in con�guration space, we look at a diagonalizing transformation

in the velocity space. This transformation replaces the joint-angle velocities _� with a new set of

velocities �, without replacing the con�guration variables �. The search for this transformation

begins with the following assumption regarding the factorization of the mass matrix.

Assumption 2 There exists a smooth, di�erentiable and invertible function m(�), with inverse

denoted by `(�), which factors the mass matrix as M(�)=m(�)m�(�) for all con�gurations.

Unlike the previous Assumption 1, the functionm(�) here need not be the gradient of any function.

The di�erentiability of m insures that the vector � =m(�) _� is di�erentiable. Invertibility

of m(�) insures that time derivatives _� of the con�guration variables can be recovered from �.

Under these conditions � represents a valid choice for a new generalized velocity vector.

Assumption 2 is much weaker than Assumption 1. One consequence of the fact that m is

not the gradient of a function is that the transformed velocity vector � is not the time derivative

of any vector of con�guration variables. Its components �(k) are referred to [8] as time derivatives

of quasi-coordinates. Integration of the vector � with respect to time does not typically lead to the

system con�guration variables. Nonetheless, �nding the system con�guration from the transformed

velocities � is a relatively easy problem. This is done by solving the kinematic equation _� =`(�)�

for _� and integrating it to update the con�guration coordinates. These dynamic and kinematic

equations are summarized in the following result.

Lemma 3.1 The equations of motion using the (�;�) coordinates are

_� + C(�;�) = � (3.1)

with the new Coriolis force vector

C(�;�) = `

�
_m��

1

2
_�
�
M�

_�

�
(3.2)

where � =`(�)T . The kinematic equation to obtain the joint-angle rates _� is

_� =`(�)�

Proof: Similar to that of Lemma 2.1. Replace (2.4) by (3.1), where C(�;�) = `C(�; _�)� _m� _�.

Use C(�; _�) = _m� +m _m� _��1
2
_�
�
M�

_�.

6

These equations of motion are considerably simpler than the original ones in (2.1). They

are quite similar to the globally diagonalized equations in (2.4). The mass matrix here is once

again constant and equal to the identity matrix. The main di�erence is that the Coriolis force term

is no longer zero. However, it will be shown later that this Coriolis vector is orthogonal to the

generalized velocity vector �. This implies that the Coriolis term does no mechanical work.

The most critical element leading to the above diagonalized equations is the mass matrix

factor m(�). Clearly, a numerical (e.g. Cholesky-like) factorization of the mass matrix at each

con�guration can be used to obtain a candidate factor m(�). This however has the disadvantage

that the factors may not smoothly depend on the con�guration coordinates and thus might not be

di�erentiable. Even more problematically, numerical factorization procedures provide no systematic

way to compute the Coriolis force term C(�;�), since the derivatives of m are required for this

purpose. Also, it may not be easy to physically interpret the corresponding transformed variables

either.

An alternative that overcomes the limitations of the numerical factorization approach, is

provided by the results on the operator factorizations of the manipulator mass matrix discussed in

references [1,6]. These factorizations are reviewed in the next section. The factors are constructed

using the spatially recursive �ltering and smoothing methods of [4, 7], and provide closed-form

expressions for m(�) and its inverse `(�). The algorithms required to do this are e�cient, as the

number of arithmetical operations increases only linearly with the number of degrees of freedom. In

addition, we later derive closed form expressions and computational algorithms for the new Coriolis

forces vector C(�;�).

The diagonal equations of motion in (3.1) occupy a middle ground between the globally

decoupled equations of motion in Lemma 2.1 and the standard equations of motion in (2.1). While

they are not quite as simple as the globally diagonalized equations of Lemma 2.1, they always exist

for the broad class of tree-con�guration systems.

4 Operator Factorization and Inversion of the Mass Matrix

Recent results [1, 6] have established that the mass matrix can be factored and inverted using

methods widely used in linear �ltering and estimation theory. These results are summarized by the

following identities, whose proof can be found in [1, 6].

Identity 4.1

M = H�M��H� (4.1a)

M = [I +H�K]D[I +H�K]� (4.1b)

[I +H�K]�1 = I �H K (4.1c)

M�1 = [I �H K]�D�1[I �H K] (4.1d)

The factorization in (4.1a) is referred to here as the Newton-Euler Operator Factorization, be-

cause it is known [6] to be equivalent to the traditional [17] recursive Newton-Euler equations of

7

motion for a serial manipulator. The recursive algorithms embedded in this factorization, while

quite useful [17] for inverse dynamics computations, are not by themselves very useful for the di-

agonalized equations developed in this paper. The primary limitation [1] is that the factors H�

and ��H� are neither square nor invertible. Nevertheless, (4.1a) is pivotal for the development of

the alternative factorization in (4.1b). This alternative has been referred to [6] as the Innovations

Factorization, because of its relationship to the innovations approach [14] of linear �ltering theory.

This factorization is essential to developing the diagonalized equations of motion.

The Innovations Factorization in (4.1b) is a closed{form, symbolic, (lower-triangular)-

(diagonal)-(upper-triangular) LDL� factorization of the mass matrix M. The factorization is

model-based [6] in the sense that the manipulator model itself is used to prescribe each of the

computations required. Because of this, every computational step has an immediate physical in-

terpretation. This adds substantial physical insight to the factorization. The factors [I +H�K]

and D are square with the former being lower triangular and the latter diagonal. Since the mass

matrix is positive-de�nite, both factors [I +H�K] and D are invertible. In particular, since D

is diagonal, each of its diagonal elements D(k) is invertible and positive de�nite. A closed-form

operator expression for the inverse of the factor [I +H�K] is provided by (4.1c). The factorization

in (4.1d) is a closed{form L�DL factorization ofM�1. These operator factorization and inversion

results for the mass matrix closely parallel similar results for covariance factorization in estimation

theory [1, 6]. The operator expression for M�1 also forms the foundation for O(N) articulated

body forward dynamics algorithms [4,7,18]. All of the operators involved in the above mass matrix

factorization and inversion are synthesized by spatially recursive algorithms.

Recursive Newton-Euler Factorization

The aim of this subsection is to summarize brie
y the essential ideas leading to the Newton-Euler

Operator Factorization M(�) = H�M��H of the manipulator mass matrix. While this is done

here for a serial chain manipulator, the factorization results apply to a much more general class of

complex joint-connected mechanical systems, including tree con�gurations with
exible links and

joints [7].

Consider a serial manipulator with N rigid links as shown in Figure 1. The links are

numbered in increasing order from tip to base. The outer-most link is link 1, and the inner-most

link is link N . The overall number of degrees-of-freedom for the manipulator is N . There are two

joints attached to the kth link. A coordinate frame Ok is attached to the inboard joint, and another

frame O+
k�1 is attached to the outboard joint. Frame Ok is also the body frame for the kth link.

The kth joint connects the (k+1)st and kth links, and its motion is de�ned as the motion of frame

Ok with respect to frame O+
k . When applicable, the free-space motion of a manipulator is modeled

by attaching a 6 degree-of-freedom joint between the base link and the inertial frame about which

the free-space motion occurs. However, in this paper, without loss of generality and for the sake

of notational simplicity, all joints are assumed to be single rotational degree-of-freedom joints with

the kth joint coordinate given by �(k). Extension to joints with more rotational and translational

degrees-of-freedom is easy [5].

The spatial velocity of the kth body frame Ok is V (k) = [!�(k); v�(k)]� 2 R6, where !(k)

and v(k) are the angular and linear velocities of Ok. With h(k) 2 R3 denoting the kth joint axis

vector, H(k) = [h�(k); 0] 2 R1 � R6 denotes the joint map matrix for the joint, and the relative

spatial velocity across the kth joint isH�(k) _�(k). The spatial force of interaction f(k) across the kth

joint is f(k)= [N�(k); F �(k)]� 2 R6, where N(k) and F (k) are the moment and force components

8

respectively. The 6� 6 spatial inertia matrix M(k) of the kth link in the coordinate frame Ok is

M(k) =

J (k) m(k)~p(k)

�m(k)~p(k) m(k)I3

!

where m(k) is the mass, p(k)2 R3 is the vector from Ok to the kth link center of mass, and

J (k)2R3�3 is the rotational inertia of the kth link about Ok. I3 is the 3� 3 unit matrix.

The recursive Newton{Euler equations are [1, 17]8>>>>><>>>>>:

V (N + 1)= 0; �(N + 1)= 0

for k = N � � � 1

V (k) = ��(k + 1; k)V (k + 1) +H�(k) _�(k)

�(k) = ��(k + 1; k)�(k + 1)+H�(k)��(k)+a(k)

end loop

(4.2)8>>>>><>>>>>:

f(0)=0

for k = 1 � � �N

f(k) = �(k; k � 1)f(k � 1)+M (k)�(k)+b(k)

T (k) = H(k)f(k)

end loop

where T (k) is the applied moment at joint k. The nonlinear, velocity dependent terms a(k) and

b(k) are respectively the Coriolis acceleration and the gyroscopic force terms for the kth link. The

transformation operator �(k; k � 1) between the Ok�1 and Ok frames is

�(k; k � 1) =

I3 ~l(k; k � 1)

0 I3

!
2 R6�6

where l(k; k � 1) is the vector from frame Ok to frame O(k�1), and ~l(k; k � 1) 2 R3�3 is the

skew{symmetric matrix associated with the cross-product operation.

The \stacked" notation �=col
n
�(k)

o
2 RN is used to simplify the above recursive Newton-

Euler equations. This notation [4] eliminates the arguments k associated with the individual links

by de�ning composite vectors, such as �, which apply to the entire manipulator system. We de�ne

T = col
n
T (k)

o
2 RN V = col

n
V (k)

o
2 R6N

f = col
n
f(k)

o
2 R6N � = col

n
�(k)

o
2 R6N

a = col
n
a(k)

o
2 R6N b = col

n
b(k)

o
2 R6N

In this notation, the equations of motion are [1, 6]:

V = ��H� _�; � = ��[H��� + a] (4.3)

f = �[M�+ b]; T =Hf =M�� + C (4.4)

9

where the mass matrixM(�) =H�M�H�; C(�; _�)=H�[M��a+ b] 2 RN is the Coriolis term;

H = diag
n
H(k)

o
2 RN�6N ; M = diag

n
M(k)

o
2 R6N�6N ; and

� = (I � E�)
�1 =

0BBBB@
I 0 : : : 0

�(2; 1) I : : : 0
...

...
. . .

...

�(n; 1) �(n; 2) : : : I

1CCCCA 2 R6N�6N (4.5)

with �(i; j) = �(i; i� 1) � � ��(j + 1; j) for i > j. The shift operator E� is de�ned as

E� =

0BBBBBB@
0 0 0 0 0

�(2; 1) 0 : : : 0 0

0 �(3; 2) : : : 0 0
...

...
. . .

...
...

0 0 : : : �(N ;N � 1) 0

1CCCCCCA 2 R
6N�6N (4.6)

Innovations Factorization By Spatial Kalman Filtering

The innovations factorization of the mass matrix isM = [I +H�K]D[I +H�K]�, and that of

its inverse isM�1 = [I �H K]�D�1[I �H K]. The spatial operators �, K and D embedded

in these factorizations are based on spatially recursive �ltering and smoothing algorithms [1, 4, 6].

The following Riccati equation for the articulated body inertia P is a key element of these �ltering

and smoothing algorithms.

Algorithm 4.1

The articulated body inertia quantities P (:), D(:), G(:), K(:), � (:), � (:), P+(:) and (:; :) are

computed by 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

P+(0) = 0

for k = 1 � � � N

P (k) = �(k; k � 1)P+(k � 1)��(k; k � 1)+M (k)

D(k) = H(k)P (k)H�(k)

G(k) = P (k)H�(k)D�1(k)

K(k + 1; k) = �(k + 1; k)G(k)

� (k) = G(k)H(k)

� (k) = I � � (k)

P+(k) = � (k)P (k)

 (k + 1; k) = �(k + 1; k)� (k)

end loop

(4.7)

This algorithm is equivalent to the following spatial operator equation

M=P�E PE
�
 =P�E�PE

�
 (4.8)

Algorithm 4.1 is the by now classical [4,14] Riccati equation of Kalman �ltering. Its solution

P (k) is the articulated body inertia [4, 18] of the part of the manipulator outboard (toward the

10

tip) of joint k. The operator P is a block-diagonal 6N � 6N matrix with its kth diagonal element

being P (k)2 R6�6. De�ne also

D = HPH� 2 RN�N

G = PH�D�1 2 R6N�N

K = E�G 2 R6N�N (4.9)

� = I �GH 2 R6N�6N

E = E�� 2 R
6N�6N

 = (I � E)
�1 2 R6N�6N

The operators D,G and � are all block diagonal. The operators K and E are not block-

diagonal, but their only nonzero block elements are K(k; k � 1)'s and (k; k � 1)'s respectively

along the �rst subdiagonal. The block elements of the lower-block-triangular operator are:

 (i; j)= (i; i � 1)� � � (j + 1; j) for i > j; (i; j) = I for i = j; and (i; j)= 0 for i < j. The

structure of the operators and E is identical to that of the operators � and E� in (4.5) and

(4.6), except that the elements are now (i; j) rather than �(i; j).

Key Spatial Operator Identities

Several of the operators above, such as � and , are related to each other by the following identities

discussed in more detail in [4]. These identities will be used later to develop a closed-form expression

for the Coriolis term.

Identity 4.2

[I �H K]H� = H (4.10a)

�K[I �H K] = K (4.10b)

�M��H� = [I + �KH]P��H� (4.10c)

H�� = H�E (4.10d)

Proof:

 �1 � ��1
(4:5;4:9)
= E� � E

(4:7)
= E��

(4:7)
= KH (4.11)

Pre- and post-multiplying this by and � respectively implies �� = KH�, from which (4.10a)

follows. Similarly, pre- and post-multiplying (4.11) by � and respectively leads to (4.10b). Pre-

and post-multiplying (4.8) by � and �� respectively leads to

�M��
(4:7)
= �P�� � ~� �P ~�

�
= �P�� � ~�P ~�

�
+ ~��P ~�

�

(4:7)
= ~�P + P�� + �KHP�� � �KHP = ~��P + [I +�KH]P��

where ~� is de�ned as ~� = �E� = �� I. (4.10c) follows by post multiplying by H� and noting that

�PH� (4:7)
= P� �H� and � �H� = 0 (4.12)

(4.10d) is established by

H�E =H ~�� =H�� �H� =H��

11

Physical Meaning of Spatial Operators

We discuss here, using Table 1 as a summary, the physical meaning of the spatial operators involved

in the innovations and Newton-Euler mass matrix factorizations, and in the spatially recursive

algorithms that synthesize the spatial operators.

The operator �(k; k� 1) converts a spatial force at the inboard frame Ok�1 and transforms

it across the (k � 1)th joint and the kth rigid link into a corresponding spatial force at the inboard

kth joint frame Ok. Its transpose �
�(k; k� 1) transforms spatial velocities and accelerations in the

opposite direction. Both transformations are rigid in the sense that the joint k � 1 is kept locked,

and the body k to which the operator corresponds is consequently a rigid body. The operator E�
is a shift operator whose elements are all zero, except along its lower sub{diagonal as shown in

(4.6). In addition to producing a shift, it rigidly transforms all the forces in the manipulator from

the inboard frame of each link to the inboard frame of the next link. Its transpose E�
� produces

a shift and a velocity transfer in the outward direction. The operator H projects spatial forces

at the joints into generalized force components along the joint axes. Its transpose H� converts

or \expands" the scalar rotational rates along the joint axes into 6{dimensional relative spatial

velocities across the joint.

The articulated body inertia P is the solution to the Riccati equation. Its diagonal element

P (k) at joint k is the e�ective inertia [18] at frame Ok of the articulated body consisting of links

1 through k. The articulated body inertia captures the \broken bicycle chain" e�ect. That is, if

a bicycle chain is broken and held �rmly at its kth link, P (k) is the e�ective spatial inertia felt at

that link. Its value depends upon the chain con�guration determined by the angles at the outboard

joints. The articulated joint inertia D(k) at joint k is a scalar quantity obtained by projecting the

articulated body inertia P (k) along the kth joint axis. The Kalman gain G is computed from the

articulated body inertia and appears [1] as a key element in the recursive �ltering and smoothing

algorithms. Its primary function is to compute the joint articulation operator � whose diagonal

element � (k) at joint k is used in the Riccati equation of Algorithm 4.1 to remove the scalar

rotational inertia about that joint, thereby rendering the resulting body outboard of this joint as

an articulated body. The operator E is similar to E�, except that it produces \articulated" shifts

instead of \rigid" shifts. The operator is a lower-triangular matrix representing an inward spatial

Kalman �ltering recursion [6]. It is used to propagate forces in an inward direction. In crossing each

joint, the articulation operator � (k) is applied. This is the reason for using the term articulated

force transformation to refer to the action of this operator. Its transpose � is an upper-triangular

matrix used to propagate velocities in an outward direction across articulated bodies. The operator

 di�ers from the operator � in that it takes into account the articulation at the joints which the

latter does not.

The Reduced Manipulator Ak at the kth link

While discussing the articulated body quantities and their physical meaning, a useful notion is

that of a reduced manipulator . We de�ne a reduced manipulator Ak at link k to be a manipulator

consisting of just links 1 through k and including joint k. Associated with every link in the

manipulator is a reduced manipulator. The reduced manipulator A1 consists of just link 1 and

joint 1, while the reduced manipulator AN associated with the N th link is the whole manipulator

itself. In general, the reduced manipulator Ak+1 consists of the reduced manipulator Ak with the

(k+1)th link and (k+1)th joint added on to its base. The reduced manipulator Ak can be regarded

as the original manipulator in which all the joints inboard of the kth joint have been locked.

12

5 The Innovations Factors Diagonalize The Mass Matrix

The innovations factorization in Identity 4.1 leads to a set of diagonal equations of motion. To this

end, de�ne the operators m(�) and `(�) as

m(�)
4
= [I +H�K]D

1

2 `(�)
4
= m�1(�)=D�

1

2 [I �H K] (5.1)

so that

M(�)
4:1b
= m(�)m�(�); M�1(�)

4:1d
= `�(�)`(�) (5.2)

The functionm(�) so de�ned satis�es all of the conditions in Assumption 2, although verifying the

condition of di�erentiability requires the following more careful argument. The operators H and

� are smooth and di�erentiable functions of the con�guration coordinates, so the only potential

trouble-spot is in the di�erentiability of the articulated body quantities in (4.8), particularly the

inverse D�1 of the diagonal operator D =HPH�. The diagonal matrix D is always positive

de�nite, invertible and a smooth function of the generalized coordinates. Consequently, D�1 is

always a smooth and di�erentiable function of �. Thus, m = [I +H�K]D
1

2 is also a smooth and

di�erentiable matrix function. Thus, m(�) satis�es all the conditions in Assumption 2.

The Relative and Total Joint Rates Are Easily Computed From Each Other

The total joint rates � are computed from the relative joint rates _� by means of the transformation

� =m� _�. This transformation is mechanized by an outward recursion from the base of the manip-

ulator to its tip. This outward recursion is speci�ed by the algorithm on the left column of Table 2.

The inverse transformation _� = `�� is also mechanized by an outward recursion. The right column

of Table 2 shows this algorithm.

Similarly, the \new" input variables � appearing in the diagonalized equation _�+C(�;�)= �

are obtained from the \old" inputs T by the transformation � = `T . This is mechanized by the

inward, tip-to-base recursion speci�ed on the left column of Table 3. The inverse operation T =m�

from the new variables � to the old variables T is also performed recursively in an outward direction,

as speci�ed by the algorithm in the right column of Table 3.

It is relatively easy therefore to go back and forth between the \old" variables _� and T in

traditional robot dynamics and the \new" variables � and � in the diagonalized equations of this

paper. The two mutually reciprocal outward recursions in Table 2 govern the relationships between

the new and old velocities. The two mutually reciprocal inward recursions in the Table 3 govern

the relationships between the new and old input forces. The term \mutually reciprocal" indicates

that the corresponding spatial operations are mathematical inverses of each other. Each of the

above four recursions represents an O(N) computational algorithm, in the sense that the number

of required arithmetical operations increases only linearly with the number of degrees of freedom.

Physical Interpretation of the Total Joint Velocities

The total joint velocities � can be obtained from the joint-angle velocities by means of the recursion

on the left column of Table 2. There is a physical interpretation to this. Observe from Table 2 that

D�
1

2 (k)�(k)= _�(k) + �(k); where �(k)
4
= G�(k)V +(k) (5.3)

in which V +(k) is the spatial velocity of frame O+
k which is immediately adjacent to and on the

inboard side of the kth joint. This spatial velocity is due to the relative velocities _�(j) at all of the

13

joints inboard of joint k. The spatial velocity V +(k) represents the spatial velocity of the \base{

body" of the kth reduced manipulator Ak. The quantity D
1

2 (k) is a normalizing factor which is

used so that the kinetic energy is not only diagonalized but normalized as in (1.2).

(5.3) states that the total joint rate D�
1

2 (k)�(k) at joint k is the sum of two angular rates.

One of these is the relative joint velocity _�(k) at joint k between link k and the next link k + 1,

which is the joint velocity at the base link of the reduced manipulator Ak. The second angular rate

given by �(k) represents an additional term due to the non{zero spatial velocity V +(k) of the \base{

body" of Ak. When link (k+1) is at rest, the additional term �(k) is zero, and D�
1

2 (k)�(k) equals

the commonly used joint relative rate _�(k). The correction term �(k) depends on the articulated

body inertia quantities P (k) and D(k). It compensates for the joint motion induced in all the

outboard joints by the motion of the \base{body" of the redundant manipulator at joint k.

Physical Interpretation of the New Generalized Forces

The input variables � in the new equations of motion also have a nice physical interpretation. This

can be seen from the relationship

T (k) =D
1

2 (k)�(k) +H(k)z(k) (5.4)

One way to interpret this relationship is to observe that the applied moment T (k) at joint k is

the sum of two terms. The �rst term D
1

2 (k)�(k) is a working joint moment in the sense that it

directly enters the diagonalized equation _� + C(�;�)= � and causes the \acceleration" term _� to

either increase or decrease. The second component H(k)z(k) depends only upon, and compensates

for all, the outboard applied moments T (1); � � � ;T (k � 1). A point worth noting here is that �(k)

depends only on quantities associated with the reduced manipulator Ak.

Extension of the Cross Product Operation to Spatial Vectors

The cross{product x � y of a pair of 3{dimensional vectors x and y can also be written as ~xy

where ~x 2 R3�3 is the appropriate skew{symmetric matrix. We introduce here a \cross{product"

operator for 6{dimensional spatial quantities as follows. Let X = [a�; b�]� and Y = [c�; b�]� be

two arbitrary spatial vectors where a; b; c; d are 3{dimensional vectors. Then, the \cross{product"

operation X � Y , is de�ned as

X � Y
4
=

a

b

!
�

c

d

!
= ~XY =

~ac

~bc+ ~ad

!
; where ~X

4
=

~a 0
~b ~a

!
2 R6�6

(5.5)

The spatial cross{product operation is anti{symmetric, i.e. X � Y = �Y � X and satis�es the

identity X�(Z�Y) = �Z�(X�Y). While the operation \�" is anti{symmetric for spatial vectors,

the matrix ~X is not skew{symmetric, i.e ~X 6= � ~X� except in the case where the lower half of X is

zero. Given spatial vectors X(k), and the vector X = col
n
X(k)

oN
k=1

2 R6N , we de�ne

~X
4
= diag

n
~X(k)

o
2 R6N�6N so that ~XY = col

n
~X(k)Y (k)

oN
k=1

2 R6N

(5.6)

14

6 Mass Matrix Derivatives in The Coriolis Term

The Coriolis term C(�;�)= `(_m��1
2
_�
�
M�

_�) is one of the key elements in the diagonalized equa-

tions of motion _� + C(�;�)= �. There are two key computations in this term:

� The inertial time derivative _m of the mass matrix factor m.

� The �rst-order derivative or \sensitivity" M� of the mass matrix M with respect to the

joint angles �.

This section summarizes key results regarding the di�erentiation of spatial operators. With

these results, the mass matrix derivatives in the Coriolis term can be computed with relative ease.

Time Derivatives of Key Spatial Operators

The inertial time derivative _x of a quantity x is taken with respect to an inertially �xed frame. The

local time derivative �x(k) of a quantity associated with body k is taken with respect to the kth body

frame Ok and takes into account only the internal changes within the reduced manipulator Ak�1,

caused by motion at the joints 1; � � � ; k � 1. The inertial derivative on the other hand takes into

account the motion of the remaining inboard joints k; � � � ;N as well. The inertial time derivative

_x(k) of an arbitrary 6-dimensional spatial vector x(k) attached to body k is related to its local time

derivative �x(k) by:

_x(k) = �x(k)+ ~
(k)x(k) (6.1)

where ~
(k) is the spatial cross product matrix associated with the spatial vector
(k), where
k

is de�ned as:

(k)
4
=

!(k)

0

!
(6.2)

Thus the inertial time derivative of the various operator quantities at the kth link consist of two

components: one component arises purely due to the the motion of joints 1; � � � ; k � 1 outboard of

link k; and a second term due to the non{zero angular velocity !(k) of the frame Ok with respect

to the inertial frame. For quantities such as �(k; j) that involve more than one link, the local time

dervative ��(k; j) is de�ned with respect to the body frame which is inboard of the other. Thus,

if k > j in this example, then the local time derivative of �(k; j) is de�ned with respect to the

reduced manipulator Ak.

De�ne also the quantities
�(k) 2 R
6 and
� 2 R

6N as follows:

�(k)
4
=
(k)�
(k + 1) =H�(k) _�(k); and
�

4
= col

n

�(k)

o
(6.3)

Table 4 summarizes some of the key expressions for the derivatives of various operator

quantities. It is easy to establish this table. In general, in going from top to bottom, each row

follows from the previous ones by using the chain-rule of di�erentiation. Only the local derivatives

in Table 4 are discussed here. The inertial derivatives in the table can be established similarly.

15

To establish the �rst row, observe that ��(k + 1; k) = �(k + 1; k) ~
�(k). The second row

follows by di�erentiating (I�E�)� = I. Rows 3 and 4 follow because the operatorsH(k) andM(k)

are rigidly attached to body k. Row 5 follows from Row 3. Row 6 follows because GD = PH�.

Hence, �GD +G�D = �PH�. Use �D =H �PH� and rearrange terms. Rows 7 follows from Row 6.

Rows 1 and 7 imply Row 8.

The local time derivative �P (k) of the articulated body inertia P (k) is a key quantity required

to evaluate the time derivatives of several of the spatial operators in Table 4, as well as the term

_m in the Coriolis force C(�;�)=`(_m� � 1
2
_�
�
M�

_�). Because of this, the local time derivative �P

requires special consideration.

Local Time Derivative of the Articulated Inertia

This section discusses the local time derivative �P (k) of the articulated body inertia P (k) and the

closely related quantity _�(k), which is the inertial time derivative of P (k) with respect to the

coordinates of the reduced manipulator Ak alone. The following algorithm is established readily

by local-time di�erentiation of the Riccati equation and use of Table 4.

Algorithm 6.1 The local time-derivative �P of the articulated inertia P and the related quantity
_� satisfy the operator equation:

_� = �P + ~
�P�P ~
�; and �P = E _�E� (6.4)

corresponding to the recursive algorithm:8>>>>><>>>>>:

_�(0) = 0

for k = 1 � � �N
�P (k) = (k; k � 1) _�(k � 1) (k; k � 1)
_�(k) = �P (k) + ~
�(k)P (k)�P (k) ~
�(k)

end loop

(6.5)

The above algorithm consists of an inward recursion from the manipulator tip to its base.

It is a \sensitivity" equation corresponding to the articulated body inertia Riccati equation. The

algorithm computes _� and the local time derivative �P of the articulated body inertia P , in terms

of the articulated body inertia P itself. The recursion is linear, with the term ~
�P � P ~
� being

an input. For each joint k, this term re
ects the change in the articulated body inertia due to the

rotation ~
�(k). Because the algorithm is an inward recursion, the time derivative _�(k) at a joint k

depends only on the rotation at the joints of the reduced manipulator Ak. The time derivative _�

does not depend on the joints k +1; � � � ;N on the inward path toward the manipulator base. The

inertial time derivative of the articulated body inertia _P satis�es the following relationship:

_P = �P + ~
P � P ~
 (6.6)

Local Time Derivative of the � Operator

Lemma 6.1

�� = ~V ��� � ~V � (6.7)

16

which implies

H[~V ��� �~V �] = H� ~
�� (6.8)

Proof: Where convenient, we use A� in place of ~A. For any spatial vector X 2 R6 and any

l 2 R3,

[��(l)X]� = ��(l) ~X���(l) where �(l)
4
=

I3 l

0 I3

!
(6.9)

Applying (6.9) to V +(k) = ��(k + 1; k)V (k + 1),

~V +(k) = [��(k + 1; k)V (k + 1)]� = ��(k + 1; k) ~V (k + 1)���(k + 1; k)

=) ~V +(k)��(k + 1; k) = ��(k + 1; k) ~V (k + 1) (6.10)

Using V (k) = V +(k) +H� _�(k), (6.10) can be recast as E��
~V = ~V +E�� = ~V E�� �

~
�E
�
�. Thus,

�E� ~V
� = � ~V �E� + E� ~
�

To establish Eq. (6.7), pre- and post-multiply this by � and recall from Table 4 that �� = �E� ~
��.

To establish Eq. (6.8), pre-multiply Eq. (6.7) by H and recall that �E� = �� I and H ~
� = 0.

Time Derivative of the Mass Matrix Innovations Factor

Identity 6.1 The local and inertial time derivatives of the mass matrix factor m are equal to

each other and are

_m = �m =H�

�
~
�

~�P +
1

2
(I + �) _�

�
H�D

�
1

2 (6.11)

Proof: Note that m = [I +H�K]D
1

2 = [I +H ~�G]D
1

2 = [I �HG+H�G]D
1

2 =H�GD
1

2 .

Use items No. 2, 3, 5 and 6 in Table 3 to show that local and inertial derivatives are the same. Use

either the left or the right column in Table 4 and get the same answer.

For later convenience, observe also the following additional identity.

Identity 6.2

_m�=H�

�
~
��KHP +

1

2
(~
�P�P ~
�+E _�� _�E�)

�
V (6.12)

17

Proof:

_m� = H�

�
~
�

~�P +
1

2
(I + �) _�

�
H�D�

1

2�

(5:1)
= H�

�
~
�

~�P +
1

2
(I + �) _�

�
H�G���H� _�

(4:3)
= H�

�
~
�

~�P +
1

2
(I + �) _�

�
H�G�V

(4:7)
= H�

�
~
��KHP +

1

2
(I + �) _�� �

�
V

(4:10d)
= H�

�
~
��KHP +

1

2
(I + E) _�(I � E

�
)

�
V

= H�

�
~
��KHP +

1

2
(_�� E _�E� + E _�� _�E�)

�
V

(6:4)
= H�

�
~
��KHP +

1

2
(~
�P � P ~
� + E _�� _�E�)

�
V (6.13)

Closed-Form Mass Matrix Sensitivity M�i
and _�

�
M�

_�

Identity 6.3

M�i =H�
h
H

i
��M �M��Hi

�

i
��H� (6.14)

There is an important new quantity in this result, and it has a simple physical interpretation.

The matrix Hi
� is the 6N � 6N matrix whose elements are all zero, except for a single 6� 6 block

~H(i) at the ith location on the diagonal. The index i corresponds to the joint-angle �i with respect

to which the sensitivityM�i is being taken. The non-zero block-diagonal element ~H(i) is obtained

as follows by appropriately rearranging the joint axis unit vector h(i) to form the cross-product-like

operation

~H(i) =

~h(i) 0

0 ~h(i)

!
(6.15)

The above formula in Eq. (6.14) is closed-form, in the sense that it explicitly computes the

mass matrix sensitivity in terms of the operators �,M , andH appearing in the mass matrix itself.

That the formula is closed-form is of extreme importance, because it implies that the mass matrix

derivatives can be easily computed using operations and spatially recursive algorithms similar to

those used to compute the mass matrix itself. As described later, this allows development of

simple closed-form expressions and recursive algorithms to evaluate the Coriolis term C(�;�) in

the diagonalized equations of motion.

Identity 6.3 is established by use of rows 2, 3, and 4 in Table 4, together with the classical

chain-rule of di�erentiation. In computing the sensitivity M�i
with respect to the ith joint angle

�i, the corresponding time derivative in Table 4 is computed assuming that all of the other angles

18

are locked. Use of the local derivatives in Table 4, instead of the inertial derivatives, leads to a

simpler derivation of Identity 6.3.

Identity 6.3 leads to the following expression for the term _�
�
M�

_� in the Coriolis forces

vector.

Lemma 6.2

_�
�
M�

_� = 2H ~V ��MV (6.16a)

= 2H�
h
~
��+ ~V �

i
MV (6.16b)

= 2H�
h
~
�(I + �KH)P + ~V �

i
MV (6.16c)

Proof: From Identity 6.3,

col
n
_�
�
M�i

_�
o

(4:3)
= 2 col

n
V �Hi

��MV
o
= 2diag

n
V �(k)H(k)

o
�MV (6.17)

Since (�X� ~Y � = Y � ~X� 8X;Y 2 R6),

diag
n
V �(k)H(k)

o
= diag

n
H(k) ~V �(k)

o
=H ~V � (6.18)

Substituting this into (6.17) leads to (6.16a). (6.16b) follows from the direct use of (6.8) in (6.16a).

The use of the expression for V in (4.3) along with (4.10c) leads to (6.16).

7 Closed-Form Expression for the Coriolis Forces C(�;�)

Identity 7.1

C(�;�) =
1

2
D�

1

2H
h
E _�� _�E� �

~
�P � P ~
� � 2 ~V �M
i
V (7.1)

where V = �H�D�
1

2� is the composite vector of spatial velocities.

Proof: Combine Lemma 3.1, (6.12), and (6.16).

Identity 7.1 is a breakthrough. It explicitly evaluates in terms of relatively simple quantities,

the very complicated quantity C(�;�) = `(_m�1
2
_�
�
M�

_�) which depends on various derivatives of

the system mass matrix. Furthermore, Algorithm 7.1 below computes this term recursively.

Inwardly Recursive Algorithm to Compute C(�;�)

19

Algorithm 7.18>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

_�(0) = 0; y(0) = 0

for k = 1 � � �N

X(k) = ~
�(k)P (k)

Y (k; k � 1) = (k; k � 1) _�(k � 1)
_�(k) = Y (k; k � 1) �(k; k � 1)+X(k) +X�(k)

y(k) = (k; k � 1)y(k � 1)� [2 ~V �(k)M(k)+X(k)�X�(k)]V (k)+

Y (k; k � 1)V (k � 1)� _�(k)� �(k)V +(k)

C(k) = 1
2
D�

1

2 (k)H(k)y(k)

end loop

(7.2)

The above algorithm is in essence a recursive implementation of (7.1). It proceeds from tip-to-base

and is of O(N) computational complexity. It assumes that the spatial velocities V have already

been computed using Table 2 for example. Similarly, the articulated quantities are either previously

or concurrently computed using (4.7).

Coriolis Force Does No Work

The Coriolis term C(�;�) is orthogonal to the generalized velocities � and therefore does no me-

chanical work.

Lemma 7.1

��C(�;�)= 0 (7.3)

Proof: Observe thatM =mm� implies that _�
�
M�

_� = 2 col
n
��m�

�i

_�
o
. Consequently, ��C(�;�)

= _�
�
�
_m� � col

n
��m�

�i
_�
o�

= _�
�
_m��

P
N
i=1

_�(i)��m��i

_� = _�
� _�� � �� _m� _� = 0.

A similar orthogonality condition can be obtained using the explicit expression for the

Coriolis forces vector C(�;�) in Identity 7.1:

��C(�;�) =
1

2
V �
h
E _�� _�E� �

~
�P�P ~
� � 2 ~V �M
i
V (7.4)

=
1

2
V �
h
E _�� _�E� �

~
�P�P ~
�

i
V= 0 (7.5)

Since the matrix expression in the middle is skew{symmetric, the overall expression is zero.

The orthogonality of the nonlinear Coriolis forces is similar to the orthogonality condition

!�[! �J!] = 0 of the gyroscopic force term in the equations of motion for a single rigid body

rotating with angular velocity !. In contrast, the corresponding Coriolis forces term C(�; _�) in the

regular equations of motion in (2.1) does work, i.e., _�
�
C(�; _�)6= 0.

Rate of change of the kinetic energy

The non-working nature of the Coriolis forces has an interesting implication. Recall that the kinetic

energy of the system is K(�;�)=1
2
���.

20

Lemma 7.2 The rate of change of the kinetic energy is the dot product of the generalized forces

and generalized velocities

d

dt
K(�;�)=�� _� = ��[��C(�;�)]=��� (7.6)

Un-normalized Diagonalized Equations of Motion

An alternative set of diagonalized equations of motion can be obtained by using a slightly di�erent

generalized velocity vector de�ned as

� =D�
1

2� = [I +H�K]� _� (7.7)

The kinetic energy in these coordinates is

K(�; _�)=
1

2
_�
�
D(�) _� (7.8)

The mass matrix now is the block diagonal matrix D(�). The equations of motion in the new

coordinates (�; �) are given below.

Lemma 7.3

D _� + C(�; �)= � (7.9)

where �
4
= D

1

2 � = [I �H K]T and

C(�; �)
4
= D

1

2

"
C(�;�)�D

1

2

dD�
1

2

dt
�

#
= H

h
_�H���(~
�P + ~V �M)V

i
=H

h
�PH��� ~
�P

+V + � ~V �MV
i

The equations of motion in (7.9) are similar to those of the previous section and can be derived

readily. They are still diagonal, but they di�er from those in (3.1) in two respects. First, although

the mass matrix D is diagonal, it is con�guration dependent. Moreover, while the Coriolis forces

term C(�; �) is simpler than C(�;�), it is not orthogonal to the generalized velocities vector any

more. An O(N) computational algorithm for the components of C(�; �) is8>>>>>>>>>>><>>>>>>>>>>>:

_�(0) = 0; y(0) = 0

for k = 1 � � �N

X(k) = ~
�(k)P (k)
_�(k) = (k; k � 1) _�(k � 1) �(k; k � 1) +X(k) +X�(k)

y(k) = (k; k � 1)y(k � 1)+ _�(k)H�(k)�(k)�
h
~V �(k)M(k) +X(k)

i
V (k)

C(k) = H(k)y(k)

end loop

(7.10)

21

Physical Interpretation of the Coriolis Term

Embedded within the Coriolis force term above is the quantity �PH��� ~
�P
+V + � ~V �MV . This

quantity consists of three terms, representing three di�erent types of rotation.

The �rst term �PH�� re
ects the \broken bicycle chain" e�ect. This term is dependent

only on the past links, which lie outboard of the given link at which the Coriolis force is being

computed. Articulation in these outboard joints creates a Coriolis force at the given joint, and the

value of this force is dependent on the local time derivative �P of the articulated inertia P emerging

from the Riccati equation.

The quantity � ~
�P
+V + re
ects motion of the base body of the reduced manipulator. This

term consequently re
ects motion of the future links, in the sense that its value at any given link

depends on the motion of all of the inboard links that lie toward the base of the given link.

The quantity ~V �MV represents the \present" link. Here, the \present" represents the

rotation of the current link k for which the corresponding Coriolis force is being computed. The

\present" body k therefore is that link associated with the kth equation in the diagonalized equations

of motion.

Thus, the Coriolis force at a given link k is dependent on all of the inertial joint velocities

�(i) for i 6= k. It is a velocity dependent term quite similar to the term ! � Iw in the dynamics

equation for a single rigid body, when generalized to 6 dimensions.

8 Forward Dynamics and Control Applications

O(N) Forward Dynamics

One important application is that of forward dynamics and numerical integration to predict the

motion of the manipulator in response to applied moments. An algorithm based upon the un-

normalized diagonalized equations of motion in Lemma 7.3 is described here. The acceleration

term is:

_�
7:9
= D�1[�� C(�; �)]

7:1
= T �H � (8.1)

where

�
4
= KT + _�H�� � (~
�P + ~V �M)V (8.2)

Algorithm 8.1 1. Compute the articulated body inertia P and the shifted Kalman gain K

using the Riccati equation in (4.7). Compute also the corresponding time derivative _� using

the \sensitivity" equation in Algorithm 6.1.

2. Compute the time derivatives _� of the total joint rates � using the algorithm:8>>>>>>><>>>>>>>:

(0) = 0

for k = 1 � � � N

�(k) = K(k; k � 1)T (k � 1) + _�(k)H�(k)�(k)� [~
�(k)P (k) + ~V �(k)M(k)]V (k)

(k) = (k; k � 1)
(k � 1) + �(k)
_�(k) = D�1(k)[T (k) �H(k)
(k)]

end loop

(8.3)

22

3. Conduct a numerical integration step to obtain the total joint rates � at a new time instant.

4. Compute the joint-angle rates _� and the spatial velocity V by the outward recursion in Table

2, modi�ed to account for the fact that � = D�
1

2 �.

5. Integrate the joint-angle rates _� to obtain the joint angles � at the new time instant.

6. Go back to the �rst step and repeat as long as necessary until a prescribed �nal time has been

reached.

The very �rst time, V must be computed explicitly (from _� or �) using one of the algorithms

in Table 2. Algorithm 8.1 is similar to those typically [4,18] associated withO(N) forward dynamics.

However, it is a signi�cant improvement because it is only a 2-sweep algorithm involving an inward

recursion to compute _� followed by an outward recursion to compute _�. The Coriolis e�ects are

completely accounted for in the single inward sweep. Previous O(N) algorithms typically [1, 18]

require at least 1 or even 2 preliminary inverse dynamics sweeps, prior to utilization of the forward

dynamics algorithm.

Decoupled Control

The diagonal equations can also be used to design controllers that are decoupled or non-interacting.

The decoupled control approach focuses on the dynamical behavior of the � coordinates. Satisfac-

tory performance in the original physical coordinate variables _� follows from this. For example,

stability in �, � coordinates is equivalent to stability in the original �; _� coordinates. The analysis

and control design however is simpler because the equations of motion used in the diagonalized

design are decoupled. The control problem can be stated in terms of the variables � and � in

the diagonalized equations of motion. The problem consists of �nding a feedback relationship that

determines the input � in terms of the velocities �. Once � is determined, it is possible to go back to

physical space to determine the required input moments T by means of the relationship T =m�,

and to mechanize this relationship using the inwardly recursive algorithm in Table 3.

Control 8.1 The rate feedback control

� = �c� (8.4)

in which c is a positive diagonal control gain matrix renders the system stable in the sense of

Lyapunov.

This result follows by using the kinetic energy as a Lyapunov function and observing that its time

derivative (given in Lemma 7.2) can be guaranteed to be negative de�nite by the choice of the

above control approach. This algorithm involves rate feedback only. It can be referred to as a

\rate" control algorithm because the feedback quantity is a velocity, in fact, it is a vector of total

velocities. It does not guarantee that the manipulator will end up in a prescribed con�guration.

The following algorithm does this.

Let bY = col
nby0; by1; by2; by3o be a 12-dimensional vector whose �rst component by0 is the

desired linear position of the end-e�ector with respect to an inertial reference. The remaining

vectors by1; by2; by3 are 3 unit vectors which together form an orthonormal basis attached to the end-

e�ector. These three vectors are used to indicate the desired orientation that the end-e�ector should

23

reach as a result of the control action. Similarly, the end-e�ector position, in both translation and

rotation, is given by Y (�) = col
n
y0(�); y1(�); y2(�); y3(�)

o
, in which the dependence on � is shown

explicitly. The Jacobian mapping between the joint rates _� and the time derivative of the output

Y is

_Y = B���H� _� (8.5)

with B being a suitable linear end-point \pick-o�" operator [4], which selects the end-point velocity

from the composite spatial velocity vector V = ��H� _�.

The Euclidean norm kek of the error e
4
= bY � Y (�) is a measure of the distance between

the desired and the actual con�guration. The following control algorithm guarantees that the

manipulator goes to the prescribed con�guration bY , while simultaneously driving all the velocities

to zero.

Control 8.2 The feedback control

� = �c1� � c2H Be (8.6)

in which c1 and c2 are positive, diagonal control gain matrices, causes the system to reach the

prescribed con�guration bY and drives the velocities to zero.

This follows easily by taking the time-derivative of the Lyapunov function k�k2 + kek2.

The above control approaches require more analysis to include such e�ects as magnitude

bounds on the applied joint moments. The use of diagonal equations of motion for robot control is

in its infancy. The main objective of this subsection is to introduce the approach and to provide a

few preliminary examples. More comprehensive application of diagonalized models in robot control

requires further investigation.

9 Conclusions

The diagonalized equations of motions presented here are very closely related to the body of knowl-

edge [1,3,6,7] recently developed by the authors on spatially recursive algorithms for manipulator

dynamics. The present paper complements and builds upon the previous work and explicitly de-

rives the diagonalized Lagrangian equations of motion, which are in addition mechanized by e�cient

recursive algorithms. The focus here is on the new equations of motion, on the diagonalizing trans-

formations required to obtain them, and on the physical interpretation of the transformed variables.

The results presented embed in a single diagonalized equation several of the spatially recursive al-

gorithms previously developed. This is one more step toward increasingly more succinct equations

of motion for articulated multibody robotic systems.

24

Acknowledgments

The research described in this paper was performed at the Jet Propulsion Laboratory, California

Institute of Technology, under contract with the National Aeronautics and Space Administration,

and has been partly supported by the National Science Foundation Grant ASC 92 19368.

References

[1] G. Rodriguez, \Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse

Dynamics," IEEE Journal of Robotics and Automation, vol. 3, pp. 624{639, Dec. 1987.

[2] G. Rodriguez, \Random Field Estimation Approach to Robot Dynamics," IEEE Transactions

on Systems, Man and Cybernetics, vol. 20, pp. 1081{1093, Sept. 1990.

[3] A. Jain, \Uni�ed Formulation of Dynamics for Serial Rigid Multibody Systems," Journal of

Guidance, Control and Dynamics, vol. 14, pp. 531{542, May{June 1991.

[4] G. Rodriguez, K. Kreutz-Delgado, and A. Jain, \A Spatial Operator Algebra for Manipulator

Modeling and Control," The International Journal of Robotics Research, vol. 10, pp. 371{381,

Aug. 1991.

[5] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, \Spatial Operator Algebra for Multibody

System Dynamics," Journal of the Astronautical Sciences, vol. 40, pp. 27{50, Jan.{March

1992.

[6] G. Rodriguez and K. Kreutz-Delgado, \Spatial Operator Factorization and Inversion of the

Manipulator Mass Matrix," IEEE Transactions on Robotics and Automation, vol. 8, pp. 65{76,

Feb. 1992.

[7] A. Jain and G. Rodriguez, \Recursive Flexible Multibody System Dynamics Using Spatial

Operators," Journal of Guidance, Control and Dynamics, vol. 15, pp. 1453{1466, Nov. 1992.

[8] L. Meirovitch, Methods of Analytical Dynamics. McGraw-Hill, New York, 1970.

[9] D. Lovelock and H. Rund, Tensors, Di�erential Forms, and Variational Principles. Dover

Publications, New York, 1989.

[10] D. Koditschek, \Robot Kinematics and Coordinate Transformations," in IEEE Conference on

Decision and Control, pp. 1{4, Dec. 1985.

[11] N. Bedrossian, \Linearizing Coordinate Transformations and Euclidean Systems," inWorkshop

on Nonlinear Control of Articulated Flexible Structures, (Santa Barbara, California), Oct. 1991.

[12] M. Spong, \Remarks on Robot Dynamics: Canonical Transformations and Riemannian Geom-

etry," in IEEE International Conference on Robotics and Automation, (Nice, France), pp. 554{

559, 1992.

[13] L. Eisenhart, Riemannian Geometry. Princeton University Press, Princeton, 1960.

[14] T. Kailath, \The Innovations Approach to Detection and Estimation Theory," Proceedings of

the IEEE, vol. 58, pp. 680{695, Mar. 1970.

25

[15] T. Kailath, \A View of Three Decades of Linear Filtering Theory," IEEE Transactions on

Information Theory, vol. IT{20, pp. 147{181, 1974.

[16] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice-Hall Inc., 1979.

[17] J. Luh, M. Walker, and R. Paul, \On-line Computational Scheme for Mechanical Manipula-

tors," ASME Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 69{76,

June 1980.

[18] R. Featherstone, \The Calculation of Robot Dynamics using Articulated-Body Inertias," The

International Journal of Robotics Research, vol. 2, pp. 13{30, Spring 1983.

26

CAPTIONS

Table 1: Physical Interpretation of Spatial Operators

Table 2: _� and � can be computed recursively from each other

Table 3: � and T can be recursively computed from each other

Table 4: Time Derivatives of Spatial Operators

Figure 1: Illustration of the links and joints in a serial manipulator

27

Operator Physical Interpretation

�(k; k � 1) To-Next-Link Force Transformation

��(k; k � 1) To-Previous-Link Velocity Transformation

E� Rigid inward shift force transformation

H Projection to joint axes

H� Expansion from joint axes

M Rigid link inertia

P Articulated inertia

D =HPH� Articulated inertia about joint axes

G Kalman gain

K = E�G Shifted Kalman gain

� = (I �GH) Joint articulation operator

E To-next-link articulated shift transformation

� = (I � E�)
�1 Rigid manipulator force transformation

�� Rigid manipulator velocity transformation

 = (I � E)
�1 Articulated manipulator force transformation

 � Articulated manipulator velocity transformation

Table 1: Physical Interpretation of Spatial Operators

� =m� _� =D
1

2 [I +H�K]� _� _� = `�� = [I �H K]�D
�

1

2�

V (N + 1) = 0

for k = Nn � � � 1

V +(k) = ��(k + 1; k)V (k + 1)

�(k) = D
1

2 (k)[_�(k) +G�(k)V +(k)]

V (k) = V +(k) +H�(k) _�(k)

end loop

V (N + 1) = 0

for k = N � � � 1

V +(k) = ��(k + 1; k)V (k + 1)
_�(k) = D�

1

2 (k)�(k) �G�(k)V +(k)

V (k) = V +(k) +H�(k) _�(k)

end loop

Table 2: _� and � can be computed recursively from each other

Figure 1: Illustration of the links and joints in a serial manipulator

28

� = `T =D�
1

2 [I �H K]T T =m� = [I +H�K]D
1

2 �

z(0) = 0

for k = 1 � � �N

z(k) = �(k; k � 1)z+(k � 1)

�(k) = D�
1

2 (k)[T (k) �H(k)z(k)]

z+(k) = z(k) +G(k)�(k)

end loop

z(0) = 0

for k = 1 � � � N

z(k) = �(k; k � 1)z+(k � 1)

T (k) = D
1

2 (k)�(k) +H(k)z(k)

z+(k) = z(k) +G(k)�(k)

end loop

Table 3: � and T can be recursively computed from each other

Operator (x) Local Derivative (�x) Inertial Derivative (_x)

1 E� E� ~
�
�E�+~
E� � E� ~

2 � =(I � E�)
�1 ��E�� = �E�

~
�� ��+�(~
E� � E� ~
)�

3 H 0 �H ~

4 M 0 ~
(k)M �M ~

5 D =HPH� H �PH� �D

6 G � �PH�D�1 �G+ ~
G

7 � = I �GH ��GH ��+~
� � � ~

8 E = E�� E (��PH�D�1H + ~
��) �E +~
E �E ~

Table 4: Time Derivatives of Spatial Operators

29

